Latest News:

Concepción, 18 de Octubre 2019

Científicos determinan otros dos agujeros negros que serán estudiados con el Telescopio de Horizonte de Eventos

  • Se trata de los agujeros negros ubicados en las galaxias NGC 3998 y Cen A, objetos que cuentan con las características necesarias para poder ser analizados.
  • La investigación comenzó el año 2018 y fue publicada en la revista científica Monthly Notices of the Royal Astronomical Society.

El Event Horizon Telescope, EHT, una red de radiotelescopios ubicados en distintos puntos de nuestro planeta, permitió captar lo que es la primera imagen de la sombra de un agujero negro supermasivo (M87), un hito en la astronomía. Esta gran herramienta otorga una oportunidad única para los científicos y científicas de seguir investigando sobre estos monstruos espaciales, a través de la interferometría de muy larga base (VLBI, por sus siglas en inglés), es decir haciendo uso de esta serie de radiotelescopios esparcidos por el planeta actuando como un solo gran telescopio del tamaño de la Tierra, para así analizar la física de los agujeros negros, como por ejemplo estudiar su Horizonte de Eventos, los procesos de acreción, o la formación de chorros en Núcleos de Galaxias Activas de Baja Luminosidad (LLAGN, por sus siglas en inglés).

El EHT ha permitido sondear regiones en el disco de acreción del agujero negro que antes eran imposibles de resolver, por lo que uno de los puntos a investigar son los diferentes procesos físicos que ocurren en el disco de acreción para obtener una idea de la fuente de energía que alimenta estos sistemas.

En este contexto, es que un grupo de investigadores formularon un modelo teórico con el objetivo de predecir el perfil de emisión de los discos de acreción de agujeros negros supermasivos en galaxias cercanas, para determinar si el Telescopio de Horizonte de Eventos o el Global 3mm VLBI Array (otra red de instrumentos compuesta por ocho antenas ubicadas en distintas zonas de la Tierra como España, Francia, Alemania y Suecia, entre otros países) pueden resolver estas estructuras.

Galaxia Centauro A

La publicación titulada “Resolving accretion flows in nearby active galactic nuclei with the Event Horizon Telescope” (“Resolviendo flujos de acreción en galaxias cercanas con el Telescopio Horizonte de Eventos) presenta la investigación llevada a cabo por los científicos Dra. Bidisha Bandyopadhyay, como primera autora; el Dr. Venkatessh Ramakrishnan (quien además se encuentra junto a Bidisha realizando un postdoctorado en el Departamento de Astronomía de la Universidad de Concepción), los Dres. Neil Nagar y Dominik Schleicher, académicos del Departamento de Astronomía UdeC; la Dra. Patricia Arévalo, Elena López y Yaherlyn Díaz, investigadoras de la Universidad de Valparaíso, además del Dr. Fu-Guo Xie del Observatorio de Shanghai. Cabe destacar que los Dres. Neil Nagar y Venkatessh Ramakrishnan fueron dos de los investigadores que participaron en la obtención de la primera imagen de la sombra de un agujero negro supermasivo, M87, publicada en abril de 2019.

Galaxia NGC3998

De esta forma, después de la primera imagen del agujero negro M87, se pueden planificar observaciones de agujeros negros supermasivos en otras galaxias. Y es lo que plantea hacer este grupo de investigadores con su reciente publicación, quienes determinaron que los agujeros negros supermasivos ubicados en las galaxias NGC 3998 y Cen A son buenos candidatos para observaciones en el futuro. “Esto porque son los únicos objetos encontrados hasta el momento (además de M87 y Sgr A*), cuya estructura del disco de acreción puede ser observada, ya que cuentan con un tamaño lo suficientemente grande como para ser analizados, a diferencia de otros objetos que sólo se visualizan como un pequeño punto”, explica el Dr. Schleicher.

Los agujeros negros supermasivos ubicados en las galaxias NGC 3998 y Cen A tienen una masa de 270 millones y 55 millones la masa del sol y se encuentran a una distancia de 51 y 14 millones de años luz de la Vía Láctea, respectivamente, en nuestro alrededor cósmico. En comparación a M87 son menos masivos, pero se encuentran más cercanos (M87 tiene 6,4 mil millones masas del sol y se encuentra a 55 millones de años luz de nuestra galaxia) y debido principalmente a que cuentan con una acreción mucho más activa que M87 y Sgr A* permiten el estudio del crecimiento de un agujero negro.

La investigación fue publicada en la revista científica Monthly Notices of the Royal Astronomical Societ, (MNRAS) y se realiza bajo el apoyo de los fondos Anillo ACT172033, ALMA-Conicyt 31160001 y Fondecyt Postdoctorado 3190366.

Para acceder a la publicación de la investigación: https://ui.adsabs.harvard.edu/abs/2019arXiv190705879B/abstract

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía
Universidad de Concepción


Concepción, 9 de Octubre 2019

Dr. Neil Nagar recibe Premio Municipal de Ciencias 2019 por su participación en la primera imagen de un agujero negro

Cada año la Municipalidad de Concepción premia a ciudadanos penquistas que hayan significado un aporte en las áreas del arte y las ciencias. En esta ocasión quien recibe el Premio Municipal de Ciencia es el astrónomo Neil Nagar, académico del Departamento de Astronomía UdeC, quien fue parte del equipo que captó la primera imagen de un agujero negro supermasivo.

El premio consta de un aporte monetario de 35UF, lo que equivale a cerca de un millón de pesos chilenos que le permitirán al investigador seguir desarrollando su trabajo como astrónomo.

Durante el mes de abril de este año los investigadores del Event Horizon Telescope, un conjunto de ocho telescopios distribuidos en distintas zonas de nuestro planeta, lograron fotografiar un agujero negro supermasivo. Los 347 investigadores, entre los que se encuentran Neil Nagar y Venkatessh Ramakrishnan del Departamento de Astronomía de Universidad de Concepción, quienes contribuyeron a este hito astronómico y científico, por el cual además recibieron el premio Breakthrough 2020, conocido también como el “Oscar de la ciencia”, en la categoría “Física Fundamental” y un reconocimiento por parte del Parlamento Chileno.

El Premio Municipal de Arte, de Ciencia, de Investigación aplicada y Ciencias Sociales, reconoce en el área de la ciencia el hito trascendental que significó, no sólo para la ciudad sino que para historia de la investigación astronómica, la primera imagen de la sombra de un agujero negro tomada por un equipo de 347 científicos y científicas de todo el mundo, entre ellos el científico destacado Neil Nagar.

El investigador, es doctor en Astronomía y se concentra en el estudio de galaxias activas, agujeros negros supermasivos, cinemática de galaxias y rayos cósmicos de altísima energía.

Cabe destacar que el astrónomo no es el único académico del Departamento de Astronomía UdeC que ha sido distinguido por la Municipalidad con este premio, pues Wolfgang Gieren, Ronald Mennickent y Douglas Geisler fueron premiados también en los años 2009, 2014 y 2016 respectivamente por sus aportes a la ciencia.

La ceremonia se llevará a cabo el día 11 de octubre a las 19:00 horas en el Salón de Honor "Regidor Carlos Contreras Maluje" de la Municipalidad de Concepción.

Acerca de Neil Nagar

  • Doctor en Astronomía por la Universidad de Maryland, College Park, Estados Unidos en 2000
  • Bachelor en Ingeniería Electrónica y Magister en Matemática de Birla Institute of Tecnology and Science, Pilani, India en 1993
  • Trabaja con el EHT (Event Horizon Telescope) desde 2010, hoy en subgrupo de galaxias activas, calibración y explotación de datos de ALMA.
  • Se incorporó al Departamento de Astronomía UdeC en el año 2004.

Premios Municipales

  • Están destinados a reconocer la obra de ciudadanos residentes o ciudadanos penquistas
  • Consta de cuatro categorías: arte, ciencia, investigación aplicada y ciencias sociales
  • Se premia con con diploma alusivo del galardón y la cantidad de dinero equivalente a 35 UF
  • El jurado lo preside el Alcalde de Concepción, se compone por cinco concejales y un representante de cada universidad con presencia en la ciudad por más de diez años.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 9 de Octubre 2019
En el marco del Foro de Cooperación Económica de Asia Pacífico:

Astrónoma UdeC participa en encuentro sobre el rol de la mujer en el desarrollo económico e intelectual

La Dra. Amelia Stutz fue parte del “Diálogo público - privado sobre la mujer y la economía”, actividad que forma parte del foro APEC, instancia en la cual compartió su experiencia y visión respecto al papel de la mujer en el ámbito laboral.

Este 2019, Chile es sede del Foro de Cooperación Económica de Asia Pacífico, APEC, encuentro que se realiza con el objetivo de promover el crecimiento de los países participantes a través de la cooperación técnica y económica por medio del intercambio comercial en la región Asia Pacífico. Este año, las temáticas prioritarias en APEC, encuentro que reunirá a líderes económicos internacionales los días 16 y 17 de noviembre, son “Sociedad Digital”, “Integración 4.0”, “Crecimiento Sustentable” y “Mujer, Pymes y Crecimiento Inclusivo”. En el marco de ésta última, desde el 30 de septiembre y hasta el 4 de octubre se llevaron a cabo en La Serena una serie de encuentros enfocados en la mujer y su participación en áreas que suelen ser masculinizadas.

Uno de éstos fue el “Diálogo público privado sobre la mujer y la economía”, actividad a la que fue invitada la Dra. Amelia Stutz, académica y astrónoma del Departamento de Astronomía de la Universidad de Concepción, donde participó junto a otras destacadas científicas del área como María Teresa Ruiz, Mónica Rubio y Sotoko Takahashi.

“En general, conversamos sobre aspectos relevantes respecto a cómo desarrollamos nuestras carreras científicas, desde nuestros inicios hasta el día de hoy, motivando a las nuevas generaciones a que perseveren por sus metas e intereses, en ámbitos en los que no sólo se debe trabajar por dichas metas, sino que también luchar por ellas, ya sean profesionales e intelectuales, considerando que hablamos de contextos masculinizados”, explica la Dra. Stutz, científica que se especializa en las múltiples longitudes de onda relacionadas con la formación de estrellas, incluyendo la identificación y caracterización de las protoestrellas más jóvenes, propiedades de las nubes moleculares y el papel de los campos magnéticos en el proceso de formación de estrellas.

En el encuentro, además se hicieron presente líderes nacionales y extranjeros del área empresarial y política, con el objetivo de dialogar en torno al empoderamiento económico de la mujer, aprovechando las oportunidades de las nuevas industrias y el desarrollo digital a nivel regional.

“Me parece importante el poder visibilizar los logros en campos como la astronomía, un área muy especializada, con la que la gente en general no tiene mucho contacto. Entonces, poder establecer una retroalimentación, conociendo las realidades académicas y científicas, se torna muy importante a la hora de destacar el gran trabajo hecho por las mujeres y así poder inspirar a otras también”, señala la Dra. Amelia Stutz, quien ha centrado su trabajo en la nube molecular de Orión, la región más masiva y cercana de formación de estrellas de alta masa y de cúmulos estelares, donde junto con sus colaboradores desarrollaron un nuevo modelo para la formación de dichos cúmulos.

Además, el día 4 de octubre se llevó a cabo el foro “Mujeres y Astronomía” en la Biblioteca Regional Gabriela Mistral de La Serena, instancia en que las astrónomas expusieron frente a estudiantes y público general. “La actividad se inició con una destacable charla del Dr. Rodolfo Barbá de la Universidad de La Serena sobre el rol histórico de la mujer en la sociedad chilena y luego compartí con los asistentes mis experiencias en el ámbito personal y profesional como mujer que ha realizado estudios y que se ha desempeñado profesionalmente en Estados Unidos, Alemania y Chile”, comenta la Dra. Stutz, quien desde el año 2016 forma parte del equipo de profesores del Departamento de Astronomía de la Universidad de Concepción.

En la ocasión, las expositoras dieron a conocer sobre el quehacer de las mujeres en la ciencia astronómica, sus aportes y cómo es trabajar en los observatorios. Se comentó, además, sobre lo que implica tratar de compatibilizar el desarrollo profesional con el personal y el aporte que la diversificación en investigadoras e investigadores puede otorgar para diversificar la manera de abordar los problemas científicos que requieren ser resueltos.

“Es muy enriquecedor poder sobre todo compartir las experiencias con nuevas generaciones y público general. Pude ver el interés y entusiasmo de ellos y recibir retroalimentación, uno de los aspectos más importantes en este tipo de encuentros”, finaliza la Dra. Stutz.

Las actividades forman parte de las más de 200 reuniones que componen el Foro de Cooperación Económica de Asia Pacífico, APEC, a realizarse en noviembre de este año. Recordemos que este es un encuentro internacional creado en 1989, a instancias de Australia y Japón, para fortalecer la comunidad de la región Asia Pacífico. Cuenta con 21 miembros, los que se denominan “economías”. Éstos son: Australia, Brunei Darussalam, Canadá, Chile, China, Hong Kong, Indonesia, Japón, Corea del Sur, Malasia, México, Nueva Zelandia, Papúa Nueva Guinea, Perú, Filipinas, Rusia, Singapur, China Taipei, Tailandia, Estados Unidos y Vietnam.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 3 de Octubre 2019

Dr. Douglas Geisler del Departamento de Astronomía es nombrado profesor emérito de la Universidad de Concepción

El científico y académico Dr. Douglas Geisler recibió el título de Profesor Emérito de parte del Consejo Académico de la Universidad de Concepción, grado honorífico que se entrega a las y los académicos destacados de la casa de estudios.

La ceremonia se llevó a cabo el día miércoles 02 de octubre a las 16:00 horas en el Salón del Mural de la Universidad de Concepción. En la ceremonia participaron el rector de la Universidad de Concepción, Dr. Carlos Saavedra, el decano de la Facultad de Ciencias Físicas y Matemáticas, Dr. Roberto Riquelme, el director del Departamento de Astronomía, Dr. Ricardo Demarco, académicos y colegas de la Universidad; y amigos y familiares del Dr. Geisler.

“Es un honor total, lo mejor de mi vida, es uno de los reconocimientos más destacados que un profesor puede recibir y estoy sumamente orgulloso”, señaló Geisler, quien ha realizado su trabajo desde hace 20 años en la UdeC, como investigador y docente, siendo unos de los primeros integrantes que dieron forma al grupo de astronomía de la universidad. Su área de investigación se desarrolla en la astronomía óptica e infrarroja analizando la edad y composición de las poblaciones estelares en galaxias cercanas.

“La Universidad siempre ha sido abierta al desarrollo de nuestra querida ciencia, desde los días del rector Sergio Lavanchy y vicerrector Ernesto Figueroa hasta el actual rector Carlos Saavedra. Siempre las autoridades han estado dispuestas a apoyar nuestro crecimiento y nosotros siempre hemos realizado un buen trabajo, haciendo investigación de la más alta envergadura, ganando proyectos importantes del nivel nacional e internacional y siendo anfitriones de reuniones científicas de calidad mundial.  Es un tremendo privilegio trabajar en una gran Universidad, y también en el país  más importante del mundo en términos de las observaciones astronómicas”. 

Entre sus investigaciones, se destaca su trabajo con el telescopio Gemini Sur, con el cual fue posible captar una imagen nunca antes vista del cúmulo estelar Liller 1, ubicado en el centro de nuestra galaxia, difícil de observar debido a la gran distancia y al polvo estelar en dicha zona. Sin embargo, junto a su equipo de trabajo, fue posible obtener una imagen de calidad ultra nítida y sin precedentes, revelando una vasta ciudad de estrellas y uno de los pocos lugares en el Universo donde se cree que ocurren colisiones estelares.

El Dr. Geisler obtuvo su doctorado en astronomía en la Universidad de Washington, EE.UU, en 1983. Como dato anecdótico, relata que fue parte del Comité de Tesis de Doctorado de Neil deGrasse Tyson (astrofísico conocido popularmente por conducir la secuela de la serie de TV “Cosmos”), en la Universidad de Columbia. “Esto fue en el año 1990 más o menos, cuando yo estaba trabajando en el Observatorio Inter-Americano de Cerro Tololo. Su tesis en parte usaba una técnica que yo desarrollé y así su profesor guía me pidió ser parte del Comité. Conocí a  Neil en persona por primera vez cuando había una reunión científica en La Serena en 1990, donde él presentó algunos de los resultados de su trabajo de este entonces; años después, en una actividad social, compartimos una cena y me pude percatar de su don único para enseñar y entretener a la vez”, acota.

En 1999 Geisler se incorpora a la UdeC, desde donde ha formado nuevos astrónomos y desarrollado ciencia de punta.  “En la universidad he tenido el apoyo de tantas personas - colegas como Wolfgang Gieren, todos los profesores y el staff del Departamento de Astronomía; el decano de nuestra facultad, Roberto Riquelme, quien me sugirió la idea de postular a este honor y ha luchado para esto por varios años; gente como Patricia Muñoz, María Teresa Sandoval, Marcela Sanhueza, Marllory  Fuentes y Jeanette Espinoza, quienes han hecho de nuestra querida facultad y departamento un lugar muy acogedor y eficiente para trabajar, y finalmente mi señora,  María Eugenia Barraza, que siempre me ha acompañado por esta vida, apoyándome en todo”, finaliza el Dr. Gieren.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 13 de Septiembre 2019

Rector Saavedra entrega reconocimiento a astrónomos UdeC que integran equipo ganador del Premio Breakthrough

La mañana del 13 de septiembre el rector de la Universidad de Concepción, Carlos Saavedra, recibió en dependencias de rectoría a los Dres. Neil Nagar y Venkatessh Ramakrishnan, astrónomos UdeC que forman parte de la Colaboración EHT, agrupación internacional de científicos que captó por primera vez en la historia la imagen de un agujero negro supermasivo, trabajo por el cual el equipo de científicos fue recientemente galardonado con el Premio Breakthrough de Física Fundamental.

"Este es un gran premio para la astronomía, pero también un reconocimiento para la Universidad. Astronomía UdeC es una de las áreas más proactivas de nuestra casa de estudios; les agradecemos su trabajo y esfuerzo por este gran avance en ciencia", señaló el rector Carlos Saavedra.

Por su parte, el Dr. Neil Nagar agradeció el recibimiento de hoy y destacó que a través del premio Breakthrough de Física Fundamental se reconoce por igual a todos los miembros del equipo EHT, "estamos orgullosos de este premio, sobre todo también porque aquí no se consideraron jerarquías, sino que se destacó por igual a todos los integrantes del equipo internacional", puntualizó.

Para el Dr. Ramakrishnan, el premio Breakthrough es "un gran reconocimiento para todo el equipo y también para los jóvenes investigadores que son parte de éste para desarrollar a futuro nuevas posiciones en investigación. Agradezco el reconocimiento que hoy nos entrega la Universidad y el apoyo que nos da para realizar investigación", finalizó el Dr. Ramakrishnan.

Recordemos que ambos investigadores y los más de 300 investigadores de la colaboración internacional del Telescopio de Horizonte de Eventos fueron galardonados con 3 millones de dólares con el premio Breakthrough de Física Fundamental. “Los fondos obtenidos permitirán mejorar la infraestructura del EHT, colaborar con investigadores ampliando posiciones de trabajo, poder desarrollar conferencias científicas y publicación de artículos, entre otras opciones”, comenta el Dr. Ramakrishnan.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


créditos imagen: ALMA
Concepción, 12 de Septiembre 2019

Investigadores que captaron la primera imagen de un agujero negro son distinguidos con premio Breakthrough 2020.

  • Entre los galardonados se encuentran los Dres. Neil Nagar y Venkatessh Ramakrishnan del Departamento de Astronomía de la Universidad de Concepción.
  • El premio Breakthrough reconoce en la categoría “Física Fundamental” el trabajo colaborativo realizado por el Event Horizon Telescope, EHT, con el cual se captó por primera vez la imagen de un agujero negro supermasivo.
  • El premio de 3 millones de dólares se dividirá igualitariamente entre los 347 científicos del EHT que participaron en la investigación.
  • El día viernes 13 de septiembre los científicos UdeC serán recibidos por el rector UdeC Carlos Saavedra en reconocimiento por el galardón.

La Fundación del Premio Breakthroug y sus patrocinadores fundadores (Sergey Brin, Priscilla Chan, Mark Zuckerberg, Ma Huateng, Yuri y Julia Milner, y Anne Wojcicki) anunciaron los galardonados con dicho premio del año 2020. Entre ellos, en la categoría “Física Fundamental”, el reconocimiento recayó en los 347 investigadores que participaron en captar la primera imagen de la sombra del agujero negro supermasivo M87 a través del Event Horizon Telescope, EHT, imagen publicada el pasado 10 de abril del presente año, marcando un hito en el mundo de la ciencia y la astronomía.

El premio “Breakthroug”, considerado el “óscar de la ciencia”, consiste en 3 millones de dólares, los que serán divididos igualitariamente entre los 347 científicos del EHT y será recibido el día 3 de noviembre de 2019 por Shep Doeleman, director de la Colaboración EHT, en representación de todos los investigadores galardonados.

Y parte de este grupo de investigadores está conformado por los Dres. Neil Nagar y Venkatessh Ramakrishnan, académico y postdoc del Departamento de Astronomía de la Universidad de Concepción, respectivamente, quienes gracias a su colaboración en el EHT convirtieron a la Universidad de Concepción en la única casa de estudios chilena en ser parte de este hito astronómico.

Es por esto que el día viernes 13 de septiembre a las 10:00 horas en dependencias de la rectoría de la Universidad de Concepción, el rector Carlos Saavedra recibirá a ambos investigadores en reconocimiento a su trabajo y premiación. En dicha instancia se desarrollará también un punto de prensa para entregar más detalles sobre el galardón y la investigación que están llevando a cabo los científicos.

“Aprecio mucho que en esta ocasión, a diferencia del premio Nobel por ejemplo, que premia a los líderes de los grupos científicos, se decidió reconocer a cada uno de los integrantes que trabajaron en captar la imagen del agujero negro, sin importar quien es el líder o fundador del proyecto, lo que demuestra su reconocimiento a la importancia que cada uno de los integrantes tiene para llevar a cabo los objetivos propuestos”, indica el Dr. Neil Nagar, académico del Departamento de Astronomía UdeC y miembro del EHT, galardonado con este premio.

créditos imagen: EHT Collaboration

Por su parte, el Dr. Venkatessh Ramakrishnan, quien realiza un postdoctorado en el Departamento de Astronomía UdeC, señala que “el premio Breakthrough es uno de los mayores reconocimientos en la actualidad y recibir este galardón como miembro activo del EHT abre posibilidades de encontrar mejores posiciones en un futuro próximo, y continuar trabajando arduamente en las investigaciones del Event Horizon Telescope”.

Expectativas para el premio Nobel de Física

En cuanto a este tema, el Dr. Ramakrishnan señala que “siempre hay varias expectativas para diferentes tipos de premios en todo el mundo por muchas personas en la comunidad astronómica, incluyendo el Nobel. Pero dentro de nuestro equipo, nuestro enfoque es producir resultados de alta calidad sin ninguna expectativa para cualquier tipo de premio, ya que aquello nos distraería de nuestra meta primaria”, puntualiza.

“Nosotros como Colaboración EHT continuamos trabajando en esta investigación y esperamos que en uno o dos años podamos publicar más resultados sobre SgrA*, M87 y otras galaxias. Con estos nuevos resultados, nuestra ciencia llegará a un nivel mucho más maduro, cimentando el camino, quizás, para un Nobel”, comenta el Dr. Nagar.

En cuanto a los usos que esperan darle al premio, el Dr. Ramakrishnan cuenta que “los fondos obtenidos permitirán mejorar la infraestructura del EHT, colaborar con investigadores ampliando posiciones de trabajo, poder desarrollar conferencias científicas y publicación de artículos, entre otras opciones”, finaliza.

Recordemos que además del actual premio Breakthrough, ambos investigadores recibieron en abril la Medalla al Reconocimiento por parte del Parlamento chileno, por tan importante aporte para la ciencia y la humanidad al publicar la primera imagen de la sombra de un agujero negro supermasivo, la cual se logró a través de observaciones simultáneas de ocho radiotelescopios ubicados en distintos puntos de la Tierra que apuntaban a la galaxia M87. De esa forma, los astrónomos transformaron nuestro planeta en una especie de telescopio gigante (el EHT) para obtener una resolución sin precedentes, la cual permitió ver la silueta del agujero negro en detalle, por primera vez en la historia, y confirmar las predicciones teóricas sobre la estructura de estos objetos celestes.

Actualmente, el equipo de la Colaboración EHT continúa desarrollando investigación en torno a los agujeros negros, específicamente con Sagitario A, SgrA*, el agujero negro supermasivo del centro de la Vía Láctea. “Esperamos obtener nuevas imágenes al respecto y resultados más detallados también de M87 y otras galaxias. De esta forma, esperamos tener muchos resultados en el futuro cercano, contribuyendo a la obtención de pruebas más fuertes en física y en la Teoría de la Relatividad General en particular”, finaliza el Dr. Nagar.

Los premios Breakthroug

  • El año 2012, cuatro matrimonios multimillonarios (el cofundador de Google, Sergey Brin, la bióloga Anne Wojcicki, el creador de Facebook, Mark Zuckerberg junto a Priscilla Chan; el físico ruso Yuri Milner y su pareja Julia Milner; y Jack Ma, dueño de una exitosa empresa china de comercio electrónico y su esposa Cathy Zhang) decidieron crear los premios Breakthrough para destacar los grandes aportes en materia científica.
  • Cuenta con tres categorías: Física Fundamental, Matemáticas y Ciencias de la vida, además de la categoría “Nuevos Horizontes” para investigadores jóvenes.
  • El premio consta de tres millones de dólares, más del doble del monto que entrega el premio Nobel.
  • Esta es la octava ocasión en la que se entregan estos premios y el jurado está conformado por científicos ganadores de las ediciones anteriores.

Sobre los investigadores UdeC galardonados

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 11 de Septiembre 2019

Dr. Ronald Mennickent Cid impartió charla en Harvard.

El académico del Departamento de Astronomía y director de Investigación y Creación Artística Dr. Ronald Mennickent, fue invitado a dar una charla al Harvard-Smithsonian Center for Astrophysics el pasado 9 de septiembre en la ciudad de Cambridge, Massachusetts. 

En el marco del proyecto Fondecyt Regular 1190621 recientemente adjudicado por el Dr. Mennickent, el profesor realizó una visita en Harvad desde donde fue invitado para impartir una charla acerca de su investigación de procesos de intercambio de masa en estrellas binarias, su evolución y la actividad de discos de acrecentamiento.

En la actividad, el Dr. Mennickent recibió importantes comentarios y retroalimentación de la doctora Selma de Mink y dos de sus estudiantes de doctorado, quienes realizan modelos de evolución estelar de progenitores de emisores de ondas gravitacionales. 

El anfitrión del Dr. Mennickent en Harvard fue el profesor Dimitar Sasselov, quien fuera el patrocinador del profesor durante su estadía postdoctoral en Harvard, en los años 1998/99.  En el año 2002, Sasselov dirigió un equipo que descubrió el planeta más distante de la Vía Láctea conocido en ese momento, cuya luz demora cinco mil años en llegar a nuestro planeta.

Además, el profesor Sasselov es el director de la Iniciativa Harvard Origins of Life, un programa interdisciplinario de investigación en el area de la Astrobiología. Como parte de su trabajo multidisciplinario, el Dr. Sasselov viaja por el mundo con sus estudiantes recolectando in-situ muestras de sedimentos geológicos de etapas primitivas de la Tierra, lo que les permite también estudiar extremófilos, microorganismos eventualmente adaptados a condiciones de vida en otros planetas. El profesor Mennickent y el profesor Sasselov conversaron la posibilidad de que la Universidad de Concepción, fuese anfitriona de una visita al desierto de Atacama en un futuro cercano. Esto, por las condiciones únicas que dicha zona ofrece para la investigación de organismos adaptados a condiciones extremas. Esto motivaría la investigación cruzada entre astronomía, geología, biología y otras disciplinas en nuestra Universidad, en un área emergente como lo es la Astrobiología, en la cual la participación de profesionales de diferentes áreas es clave.


Concepción, 29 de Agosto 2019

Astrónomo del Departamento de Astronomía UdeC liderará Grupo Asociado al Instituto Max Planck de Física Extraterrestre de Alemania en Chile.

"El ciclo bariónico en galaxias" es el nombre del Grupo Asociado que el Dr. Rodrigo Herrera-Camus, actual académico del Departamento de Astronomía de la Universidad de Concepción, llevará a cabo en conjunto con la Sociedad Max Planck, organización alemana sin fines de lucro que promueve la investigación científica de vanguardia.

El trabajo tendrá una duración de cinco años y buscará, a través de la investigación, pasantías, encuentros y charlas, generar intercambio de conocimiento entre investigadores y estudiantes de Chile y Alemania, enfocado en el estudio de la formación y evolución de las galaxias.

El Dr. Rodrigo Herrera-Camus realizó su postdoctorado en el Instituto Max Planck de Física Extraterrestre en Alemania, donde se desempeñó en el Grupo Infrarrojo/sub-milimétrico. “Allí trabajé con el director del Grupo, Dr. Reinhard Genzel, con quién postulamos ante el Presidente de la Sociedad Max Planck para formar un grupo en Chile. Nuestra postulación fue revisada por un equipo de expertos y aceptada, por lo que durante cinco años trabajaremos en potenciar la investigación y el intercambio de conocimientos en el área de la astronomía”, explica el Dr. Herrera-Camus.

La investigación se llevará a cabo con los observatorios ALMA y VLT de Chile y NOEMA en Francia, con el objetivo de estudiar las propiedades del gas molecular e ionizado en galaxias a medidas que éstas evolucionan. “ALMA está generando una revolución en nuestro entendimiento sobre las propiedades del gas molecular en galaxias, especialmente aquellas que podemos observar cuando el Universo aún no cumplía uno o dos mil millones de años de edad. Por ejemplo, uno de los proyectos que vamos a desarrollar en conjunto se centra en las propiedades cinemáticas de una galaxia cuando el Universo tenía tan sólo mil millones de años. Esto nos va a permitir aprender acerca de su estructura (bariónica y de materia oscura) y cuan avanzada está en su proceso de formación”, puntualiza el Dr. Herrera-Camus.

Como mencionamos anteriormente, uno de los objetivos de este trabajo es tener, a través de un Grupo Asociado, una red de colaboración efectiva entre la Sociedad Max Planck y la comunidad astronómica de Chile. “En el aspecto científico, esperamos hacer una contribución significativa al campo de la evolución de galaxias, y en el plano académico nuestro interés radica en promover, a través de visitas regulares y encuentros remotos, el intercambio de experiencias, conocimientos e ideas de proyectos futuros entre estudiantes, postdocs y profesores de los dos continentes”, explica el Dr. Rodrigo Herrera-Camus.

De esta forma, se espera que profesores y estudiantes del Departamento de Astronomía de la Universidad de Concepción que desarrollan investigación en astrofísica de galaxias se puedan sumar y aprovechar las oportunidades de intercambio y colaboración que ofrece este programa. “La meta es que de aquí a cinco años podamos tener publicaciones cuyos autores sean estudiantes y profesores en ambas instituciones”, señala el Dr. Rodrigo Herrera-Camus.

Recordemos que el Departamento de Astronomía, perteneciente a la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Concepción, es un organismo relevante en el desarrollo de la formación de nuevos científicos en la zona, contando con docentes de alto nivel y trabajando en divulgar esta ciencia a la comunidad. Por su parte, la Sociedad Max Planck funciona como una red de Institutos interdisciplinarios con autonomía y altamente internacionalizados, que, en el caso de América Latina, establece proyectos de cooperación científica con Chile, Argentina, Brasil, Colombia, México, Perú y Uruguay, entre otros.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 22 de Agosto 2019

Avance tecnológico en Astronomía UdeC permite aumentar precisión en mediciones de vapor de agua atmosférico

El Centro Para la Instrumentación Astronómica, CePIA, de la Universidad de Concepción se encuentra desarrollando nueva tecnología para mejorar la precisión en las mediciones de vapor de agua atmosférico, y progresar en el entendimiento acerca de su impacto en observaciones astronómicas.

Sabemos que el norte de Chile cuenta con los mejores sitios en el mundo para realizar astronomía milimétrica y sub-milimétrica, debido a sus condiciones de baja humedad a gran altura, por ejemplo. Es así como en nuestro territorio de han instalado algunos de los observatorios astronómicos más importantes del mundo; pero a pesar de dichas cualidades, el vapor de agua presente en la atmósfera, y su variabilidad en el tiempo, siempre han significado un detrimento para las débiles señales cósmicas de interés astronómico, ya que las atenúa y las dispersa, complicando su detectabilidad.

Es así como se han desarrollado diferentes técnicas e instrumentos para medir la cantidad de vapor de agua atmosférico, para así disminuir sus efectos en las observaciones astronómicas. Estos instrumentos son los llamados radiómetros de vapor de agua, producidos principalmente por empresas de países como Alemania y Suecia, los cuales han tenido mejoras tecnológicas en los últimos años, pero que igualmente se enfrentan al desafío de medir estas cantidades con precisión. Idealmente, todos los radiotelescopios deberían contar con un radiométro de estas características, con el fin de aportar información clave en la calibración de datos científicos y para la planificación de actividades en los observatorios, pero actualmente sólo algunos cuentan con este instrumento, debido principalmente a su alto costo y a la poca precisión que estos logran alcanzar (ALMA y Cerro Paranal, son algunos de los observatorios que cuentan con este instrumento).

Debido a esto es que el proyecto “Desarrollo de prototipos de radiómetros de pseudo-correlación para sistemas ultra-sensitivos”  del Centro Para la Instrumentación Astronómica, CePIA, del Departamento de Astronomía, en conjunto con el Departamento de Ingeniería Mecánica de la Universidad de Concepción, busca desarrollar un prototipo de radiómetro de vapor de agua de mayor sensibilidad en comparación con lo hasta ahora existente en el mercado, basándose en un cambio en la arquitectura del sistema de recepción de señales, y en la inclusión de componentes milimétricos ultra sensitivos actualmente en desarrollo, como son los amplificadores de bajo ruido (LNA) en tecnología monolítica MMIC. De esta forma, se progresa en el desarrollo de instrumentación astronómica desde Concepción, hecho por profesionales chilenos, con el objetivo de lograr resultados más precisos que lo obtenido actualmente.

Por ejemplo, en el caso de ALMA, los radiómetros con los que cuentan sus telescopios se encuentran alojados dentro de las antenas, por lo que permanecen inoperantes cuando el obturador del telescopio se cierra debido a las condiciones climáticas y de mantenimiento, por lo que adicionalmente, esta propuesta busca elaborar e instalar estos nuevos radiómetros sensibles en el altiplano Chileno, proporcionando mediciones instantáneas de vapor de agua en todo momento, almacenando los datos en tiempo real, y generando así una base de datos de largo plazo útil para las operaciones de los observatorios en dicho parque astronómico.

A través del programa Fondef IdeA I+D de Conicyt, investigadores de CePIA de la Universidad de Concepción, trabajan en el desarrollo de esta tecnología desde la plataforma científica WenuLafquen de dicha casa de estudios.

“Hemos estado desarrollando un prototipo de un instrumento similar para el observatorio LLAMA, a ubicarse en el Nor-Oeste Argentina, apoyado por la iniciativa Quimal de Conicyt, trabajo que actualmente se encuentra en proceso de integración. La experiencia en el desarrollo de este instrumento para LLAMA contribuye en gran medida a facilitar el diseño y desarrollo del moderno sistema de medición de vapor de agua que ahora llevamos a cabo en este proyecto que impulsa la iniciativa Fondef”, comenta el director de CePIA, Dr. Rodrigo Reeves.

El proyecto está conformado por el Centro Para la Instrumentación Astronómica, CePIA del Departamento de Astronomía de la Universidad de Concepción, entidad que lidera el trabajo bajo la dirección del Dr. Rodrigo Reeves; la Dra. Silvia Riquelme quien es sub-directora del proyecto y experta en proyectos de desarrollo tecnológico, el Departamento de Ingeniería Mecánica de la misma casa de estudios, el Centro de Astronomía de América del Sur de la Academia China de Ciencias, CASSACA, el cual contribuye como institución interesada en la implementación de tecnología para sus operaciones como observatorio científico, (para lo cual aporta con recursos de diversa índole para la validación de los prototipos en terreno), y la compañía VTT de Finlandia, quienes también son parte interesada en el proceso de llevar potencialmente al mercado este tipo de desarrollo.

Una vez probado el prototipo en los laboratorios de CePIA, será llevado a la Región de Antofagasta, donde CASSACA ejecutará la validación del instrumento, comparándolo con otros instrumentos existentes en el campo.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 20 de Agosto 2019

El Universo temprano y su química: nuevas ideas y rutas de observación

El pasado mes de abril se dio a conocer un importante descubrimiento en el mundo de la astroquímica: Se detectó lo que sería el primer enlace molecular en el Universo. Se trata del ión de hidruro de Helio HeH+ en la nebulosa planetaria NGC 7027, lo que confirma predicciones de la química que esencialmente hacen posible el Universo como lo conocemos.

Y en agosto de este año, Novotny et al. publicó el paper “Quantum-state-selective electron recombination studies suggest enhanced abundance of primordial HeH+” en la revista Science. En la investigación, “se midió la velocidad de destrucción de HeH+ en colisión con electrones. Este es el proceso de destrucción más importante para esta molécula; de hecho, determina su abundancia y su observabilidad. El experimento también representa un avance en este tipo de estudios, es decir, reacciones de moléculas iónicas con electrones, un experimento que ahora se puede aplicar a otras moléculas de interés en astrofísica”, explica el Dr. Stefano Bovino, académico del Departamento de Astronomía UdeC, quien fue invitado por la revista científica Science a comentar la investigación de Novotny et al.

El Dr. Bovino se especializa en astroquímica y se ocupa de proporcionar modelos de última generación que permitan una comparación y una mejor interpretación de los datos de observación. Como astroquímico, está involucrado en muchos problemas diferentes donde la microfísica podría ser relevante como el ISM en galaxias, la formación de estrellas en nubes moleculares y la transición entre la primera y la segunda generación de estrellas, incluyendo la química de el Universo temprano. “Durante mi doctorado realicé estudios sobre HeH+. En un paper de 2011, con nuevos cálculos teóricos donde combinamos estudios de química cuántica y modelos astroquímicos, mostramos que la abundancia de HeH+ es mayor de lo esperado en estudios anteriores”, explica Bovino.

El trabajo generó un nuevo interés en el estudio de esta materia, y fue citado por otros investigadores en las prestigiosas revistas científicas Nature y Science y debido a esto es que la revista Science le invitó a comentar la investigación “Quantum-state-selective electron recombination studies suggest enhanced abundance of primirdial HeH+”.

“First molecule still animates astronomers. A study of the helium hydride ion stirs up primordial astrochemistry” se titula el análisis de Stefano Bovino junto a Daniele Galli. “Básicamente, en nuestro artículo comentamos los nuevos trabajos: observación de HeH+ por Rolf Güsten y colaboradores y el nuevo experimento de Novotny et al. colocándolos en un contexto general”, detalla Bovino.

En el artículo se explica por qué estos nuevos estudios  son importantes para el campo. “De hecho, hemos observado HeH+ en una nebulosa planetaria que es un ambiente caliente donde se encuentra hidrógeno ionizado y se puede formar HeH+, pero lo ideal sería observar HeH+ en un cuásar, es decir, un núcleo activo de una galaxia lejana, para comprobar las predicciones teóricas sobre la historia del Universo.

Con estos estudios, se ha abierto una nueva ruta para la observación de esta molécula. “Por ejemplo, podemos observar el efecto que esta molécula podría tener sobre la radiación cósmica de microondas, porque los fotones emitidos por las moléculas primordiales pueden interactuar con la radiación de fondo cósmica, generando fluctuaciones en su  espectro”, finaliza el académico UdeC.

Para leer el análisis de Bovino y Galli sobre el estudio de Novotny et al., visite el link: https://science.sciencemag.org/content/365/6454/639/tab-pdf

Para leer el paper de Novotny et al., visite el link: https://science.sciencemag.org/content/365/6454/676.abstract

Para leer sobre la primera observación, visite el link: https://www.nature.com/articles/s41586-019-1090-x

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 13 de Agosto 2019

Dr. Douglas Geisler del Departamento de Astronomía es nombrado profesor emérito de la Universidad de Concepción

El científico y académico Dr. Douglas Geisler recibió el título de Profesor Emérito de parte del Consejo Académico de la Universidad de Concepción, grado honorífico que se entrega a las y los académicos destacados de la casa de estudios.

“Es un honor total, lo mejor de mi vida, es uno de los reconocimientos más destacados que un profesor puede recibir y estoy sumamente orgulloso”, señaló Geisler, quien ha realizado su trabajo desde hace 20 años en la UdeC, como investigador y docente, siendo unos de los primeros integrantes que dieron forma al grupo de astronomía de la universidad. Su área de investigación se desarrolla en la astronomía óptica e infrarroja analizando la edad y composición de las poblaciones estelares en galaxias cercanas.

“La Universidad siempre ha sido abierta al desarrollo de nuestra querida ciencia, desde los días del rector Sergio Lavanchy y vicerrector Ernesto Figueroa hasta el actual rector Carlos Saavedra. Siempre las autoridades han estado dispuestas a apoyar nuestro crecimiento y nosotros siempre hemos realizado un buen trabajo, haciendo investigación de la más alta envergadura, ganando proyectos importantes del nivel nacional e internacional y siendo anfitriones de reuniones científicas de calidad mundial.  Es un tremendo privilegio trabajar en una gran Universidad, y también en el país  más importante del mundo en términos de las observaciones astronómicas”. 

Entre sus investigaciones, se destaca su trabajo con el telescopio Gemini Sur, con el cual fue posible captar una imagen nunca antes vista del cúmulo estelar Liller 1, ubicado en el centro de nuestra galaxia, difícil de observar debido a la gran distancia y al polvo estelar en dicha zona. Sin embargo, junto a su equipo de trabajo, fue posible obtener una imagen de calidad ultra nítida y sin precedentes, revelando una vasta ciudad de estrellas y uno de los pocos lugares en el Universo donde se cree que ocurren colisiones estelares.

El Dr. Geisler obtuvo su doctorado en astronomía en la Universidad de Washington, EE.UU, en 1983. Como dato anecdótico, relata que fue parte del Comité de Tesis de Doctorado de Neil deGrasse Tyson (astrofísico conocido popularmente por conducir la secuela de la serie de TV “Cosmos”), en la Universidad de Columbia. “Esto fue en el año 1990 más o menos, cuando yo estaba trabajando en el Observatorio Inter-Americano de Cerro Tololo. Su tesis en parte usaba una técnica que yo desarrollé y así su profesor guía me pidió ser parte del Comité. Conocí a  Neil en persona por primera vez cuando había una reunión científica en La Serena en 1990, donde él presentó algunos de los resultados de su trabajo de ese entonces; años después, en una actividad social, compartimos una cena y me pude percatar de su don único para enseñar y entretener a la vez”, acota.

En 1999 Geisler se incorpora a la UdeC, desde donde ha formado nuevos astrónomos y desarrollado ciencia de punta.  “En la universidad he tenido el apoyo de tantas personas - colegas como Wolfgang Gieren, todos los profesores y el staff del Departamento de Astronomía; el decano de nuestra facultad, Roberto Riquelme, quien me sugirió la idea de postular a este honor y ha luchado para esto por varios años; gente como Patricia Muñoz, María Teresa Sandoval, Marcela Sanhueza, Marllory  Fuentes y Jeanette Espinoza, quienes han hecho de nuestra querida facultad y departamento un lugar muy acogedor y eficiente para trabajar, y finalmente mi señora,  María Eugenia Barraza, que siempre me ha acompañado por esta vida, apoyandome en todo”, finaliza el Dr. Geisler.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


La primera imagen de la sombra de un agujero negro supermasivo, ubicado a 55 millones de años luz de la Tierra
Concepción, 05 de junio 2019

Hitos Astronómicos llevados a cabo desde Chile

Sabido es que nuestro país es uno de los mejores lugares para desarrollar la astronomía. Esto porque cuenta con limpios cielos para la observación astronómica, ya que en el Desierto de Atacama es posible encontrarse con más de 300 días despejados al año, además de contar con poca humedad ambiental, lo que facilita el desarrollo de esta hermosa ciencia. Por lo mismo, es que el norte de Chile cuenta con algunos de los observatorios astronómicos más avanzados del mundo y se espera que para la siguiente década el 70 % de la infraestructura astronómica mundial se encuentre en nuestro país.

Dentro de todo esto destaca el Departamento de Astronomía de la Universidad de Concepción, el cual cuenta con prolíficos investigadores que constantemente desarrollan destacadas investigaciones en el área:

Desde nuestra Vía Láctea a la Gran Nube de Magallanes: La medida más precisa del Universo

Un ejemplo de lo mencionado anteriormente es la investigación titulada “Una distancia a la Gran Nube de Magallanes que es precisa al uno por ciento “, llevada a cabo por los Dres. Grzegorz Pietrzynski (como primer autor), Darek Graczyk y Wolfgang Gieren, todos pertenecientes al Departamento de Astronomía UdeC, quienes forman parte del “Proyecto Araucaria”, un grupo de 22 científicos de distintos países como Polonia, Francia, Estados Unidos y Alemania. A través de un trabajo de investigación de más de 10 años lograron determinar con la máxima precisión posible hasta ahora la distancia entre la Vía Láctea y la Gran Nube de Magallanes con un 1% de precisión, algo nunca jamás logrado y un gran avance para el mundo de la astronomía. Gracias a este trabajo es que un proyecto liderado por el Premio Nobel de Física (2011) Adam G. Riess, logró determinar que el Universo se está expandiendo un 9% más rápido de lo que se creía, lo que viene a fortalecer la escala de distancias del Universo.

La medición de distancia entre la Vía Láctea y la Nube de Magallanes se logró con un 1% de precisión, algo jamás antes obtenido en la ciencia astronómica.
Los Dres. Wolfgan Gieren y Grzegorz Pietrzynski, junto a otros investigadores, trabajaron por más de una década para determinar la mayor precisión en escala de distancias .

Event Horizon Telescope: primera imagen de un agujero negro

Otro avance digno de mencionar se refiere a la primera imagen captada en la historia de un agujero negro supermasivo. El día 10 de abril de 2019, se anunció mundialmente que el proyecto EHT, Event Horizon Telescope, logró captar la sombra de un agujero negro en el centro de la Galaxia M87. Es así como se pudo visualizar por primera vez en la historia la sombra de un agujero negro, el cual se encuentra a 55 millones de años luz de la Tierra y tiene una masa de 6.500 millones de veces la del Sol. En este tremendo trabajo, que consistió en un conjunto de ocho telescopios instalados en distintos países y que trabajaron como un solo gran telescopio el tamaño de la Tierra, participaron dos investigadores del Departamento de Astronomía UdeC: los Dres. Neil Nagar y Venkatessh Ramakrishnan, quienes gracias a su aporte transformaron a la Universidad de Concepción en la única casa de estudios sudamericana en ser parte de este hito astronómico. Desde el año 2016 estos investigadores, junto a más de 200 otros científicos, llevaron a cabo análisis de datos, desarrollo de muestras de galaxias y determinación de masas de agujeros negros, entre otros aportes que contribuyeron finalmente a la obtención de dicha imagen.

Neil Nagar.
Venkatessh Ramakrishnan.

Leigthon Chajnantor Telescope: el radiotelescopio que se acerca a Chile:

Se trata de un proyecto originado desde la Universidad de Concepción, con el cual se espera sumar a nuestro país un nuevo instrumento astronómico traído desde Hawaii, con el cual se realizarán mapeos profundos del cielo en un rango submilimétrico que hoy son escasos.

Este proyecto de alto impacto es desarrollado por la UdeC, el Instituto de Tecnología de California (Caltech) y la Universidad Normalista de Shanghai, China (ShNU) y comenzó a gestionarse a través del Departamento de Astronomía, representado por el Dr. Rodrigo Reeves, director del Centro para la Instrumentación Astronómica, CePIA, para refaccionar y trasladar a nuestro país un radiotelescopio de 10.4 metros de diámetro actualmente ubicado en Hawaii, Estados Unidos, el cual pretende ser instalado en el Llano de Chajnantor, Altiplano Chileno, uno de los mejores sitios de observación astronómica del mundo.

Con este instrumento se espera realizar mapeos profundos del cielo en un rango submilimétrico que hoy son escasos. Además, se busca caracterizar la “época de reionización”, tiempo de vida temprana del Universo a la cual escasamente se ha tenido acceso con la instrumentación existente.

Además, un punto muy importante es que parte de las actividades del LCT estarán concentradas físicamente en el campus de la Universidad de Concepción. Es decir, laboratorios y salas de control con el cual se manejará el telescopio, se encuentran en dependencias del Observatorio WenuLafken, ubicado en la casa de estudios penquista. Esto implica grandes beneficios en cuanto a relaciones internacionales, vinculación con el medio, educación y entrenamiento de científicos e ingenieros.

Dr. Rodrigo Reeves fue quien gestionó el nuevo radiotelescopio LCT.
El LCT se apronta para ser instalado en el norte de nuestro país.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción, 22 de Mayo 2019

Investigadores y divulgadores se reúnen para discutir acciones del proyecto Anillo de Agujeros Negros Supermasivos

En la actividad participan investigadores de las regiones de Valparaíso, Metropolitana y del Biobío.

Desde el 23 y hasta el 25 de mayo se lleva a cabo la Reunión del “Proyecto Anillo Conicyt ACT172033 Formación y Crecimiento de Agujeros Negros Supermasivos”, liderado por el académico UdeC, Dr. Dominik Schleicher.

El encuentro, que se lleva a cabo en dependencias de la Universidad de Concepción (EmpreUdeC y Auditorio Departamento de Astronomía), reúne a 32 investigadores y divulgadoras científicas que forman parte del Proyecto Anillo Conicyt ACT172033 Formación y Crecimiento de Agujeros Negros Supermasivos, pertenecientes a la U. de Valparaíso, Pontificia Universidad Católica de Chile, U. Diego Portales y U. de Concepción

El objetivo de la reunión es “mejorar la colaboración y el intercambio científico, y planificar los proyectos científicos y de la divulgación para el próximo año”, según explica el Dr. Dominik Schleicher; es decir discutir las acciones financiadas por el proyecto: Desde investigación propiamente tal (agujeros negros) hasta actividades de divulgación de la ciencia para la comunidad en general (Congreso Astronómico, Escuela de Astronomía para profesores, Astronomía Inclusiva, entre otras).

El año 2018 se llevó a cabo la primera reunión de este proyecto en Valparaíso, sólo con los investigadores principales, a diferencia de esta ocasión en la que participan todos los miembros del proyecto Anillo.

El proyecto Anillo Conicyt ACT172033 se inició el año 2017 y está centrado en el estudio de los agujeros negros supermasivos, utilizando la teoría y la observación.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Los Dres. Venkatessh Ramakrishnan y Neil Nagar
Concepción, 16 de Abril 2019

Astrónomos de la Universidad de Concepción recibirán Medalla al Reconocimiento por parte del Senado

Los científicos Neil Nagar y Venkatessh Ramakrishnan recibirán dicha condecoración por su aporte en la obtención de la primera imagen real de un agujero negro, hito en la historia de la astronomía.

Las felicitaciones no paran. Los doctores y astrónomos Neil Nagar y Venkatessh Ramakrishnan, ambos del Departamento de Astronomía de la Universidad de Concepción, serán condecorados con la Medalla al Reconocimiento que entrega el Senado de Chile. Esto, debido a la contribución que los científicos entregaron en el proyecto EHT, Event Horizon Telescope, con el cual se obtuvo la primera imagen real en la historia de la sombra de un agujero negro.

El presidente del Senado de Chile, Jaime Quintana Leal, realizó la invitación a los dos investigadores “por tan importante aporte para la ciencia y la humanidad”, quienes serán recibidos el día 17 de abril en dependencias del Senado en Valparaíso.

Recordemos que el pasado 10 de abril de 2019 se dio a conocer mundialmente la primera imagen de un agujero negro, gracias al trabajo colaborativo de más de 200 investigadores que forman parte del Telescopio de Horizonte de Evento, EHT, una red de telescopios instalados en Chile, México, EE.UU, Europa y el Polo Sur, que funcionan como un gran telescopio del tamaño de la Tierra. Luego de años de investigación, el equipo logró captar la imagen que pasará a la historia en el mundo de la ciencia.

Gracias a la contribución de Neil Nagar y Venkatessh Ramakrishnan, la Universidad de Concepción se transformó en la única casa de estudios chilena en ser parte de este proyecto internacional.

Contribución del Dr. Nagar:

La U. de Concepción ha sido miembro del EHT desde su fundación formal e informal. Nagar es co- coordinador del Grupo de Trabajo "AGN y otras ciencias no-horizonte" del EHT. Sus principales contribuciones incluyen análisis de los datasets de ALMA, apoyo en observación en APEX, propuestas de tiempo (e.g., Co-PI de las propuestas M87 y SgrA* a ALMA) y financiamiento (principalmente para postdocs), desarrollo de una muestra de galaxias cercanas (más allá de SgrA* y M87) para observaciones con el EHT, y la determinación de masas de agujeros negros para M87 y otros (futuros) objetivos de EHT. Desde el año 2004 forma parte del Departamento de Astronomía de la Universidad de Concepción.

Contribución del Dr. Ramakrishnan:

Ramakrishnan fue contratado en un postdoc de ALMA-Conicyt en la U. de Concepción para apoyar el uso científico del EHT. Ha hecho contribuciones significativas al Grupo de Trabajo de Imágenes del EHT, participando así en todos los esfuerzos de imágenes del M87. También se dedica a la obtención de imágenes de los objetivos de EHT AGN. Ramakrishnan trabaja en imágenes de línea continua y espectral de los datos de ALMA procedentes del EHT, proporcionando así una mejor calibración para el EHT, y en destilar una muestra más grande de galaxias cercanas para futuras observaciones con el EHT. Además, está presente en todas las carreras de EHT (puesta en marcha y observación) en APEX. Desde el año 2017 realiza el post doctorado en la UdeC.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Concepción 12, de Abril 2019

Un equipo de astrónomos capta la primera imagen de un agujero negro

  • Los Dres. Neil Nagar y Venkatessh Ramakrishnan del Departamento de Astronomía, formaron parte de este gran avance, transformando a la Universidad de Concepción en la única casa de estudios chilena en ser parte de este hito astronómico.
  • El avance se logró con el Telescopio de Horizonte de Eventos, EHT, el cual reúne telescopios ubicados en distintas partes del globo (Chile, México, EE.UU., Europa y el Polo Sur) para formar un telescopio virtual del tamaño de la Tierra, dotado de una sensibilidad y una capacidad de resolución sin precedentes.
  • Utilizando métodos de calibración múltiple, y métodos de imagen, se ha descubierto la presencia de una estructura en forma de anillo con una región central oscura —la sombra del agujero negro— que persistió durante varias observaciones independientes llevadas a cabo por el EHT.
  • Este agujero negro se encuentra a 55 millones de años luz de la Tierra y tiene una masa de 6.500 millones de veces la del Sol.

El Telescopio de Horizonte de Eventos (EHT, Event Horizon Telescope), un conjunto de ocho telescopios instalados en la Tierra distribuidos por todo el planeta y formado gracias a una colaboración internacional, fue diseñado para captar imágenes de un agujero negro. El día 10 de abril de 2019, en seis conferencias de prensa coordinadas por todo el mundo, los investigadores del EHT revelaron que lograron descubrir la primera evidencia visual directa de un agujero negro supermasivo y su sombra.

Este avance revolucionario fue anunciado en una serie de seis artículos científicos publicados en una edición especial de la revista The Astrophysical Journal Letters. La imagen revela el agujero negro que hay en el centro de Messier 87 (M87) [1], una galaxia masiva en el cercano cúmulo de galaxias Virgo. Este agujero negro se encuentra a 55 millones de años luz de la Tierra y tiene una masa de 6500 millones de veces la del Sol [2].

El EHT une a telescopios de todo el mundo para formar un telescopio virtual sin precedentes del tamaño de la Tierra [3]. El EHT ofrece a los científicos una nueva forma de estudiar los objetos más extremos del universo, predichos por la relatividad general de Einstein, durante el año del centenario del histórico experimento que confirmó la teoría por primera vez [4].

“Hemos tomado la primera fotografía de un agujero negro”, afirmó el director del proyecto EHT, Sheperd S. Doeleman, del Centro de Astrofísica Harvard-Smithsonian. “Es una extraordinaria hazaña científica lograda por un equipo de más de 200 investigadores”.

Los agujeros negros son objetos cósmicos extraordinarios con enormes masas pero con tamaños extremadamente compactos. La presencia de estos objetos afecta a su entorno de maneras extremas, deformando el espacio-tiempo y sobrecalentando cualquier material circundante.

Una red global de radiotelescopios: El Telescopio de Horizonte de Eventos (EHT, Event Horizon Telescope), un conjunto de ocho telescopios instalados en la Tierra distribuidos por todo el planeta y formado gracias a una colaboración internacional, fue diseñado para captar imágenes de un agujero negro. En Chile participan ALMA y APEX, ubicado en el Llano de Chajnantor, en el Desierto de Atacama.

“Si está inmerso en una región brillante, como un disco de gas que refulge intensamente, podemos esperar que un agujero negro cree una región oscura similar a una sombra, algo predicho por la relatividad general de Einstein que nunca habíamos visto antes”, explicó el presidente del Consejo Científico del EHT, Heino Falcke, de la Universidad de Radboud, en Países Bajos. "Esta sombra, causada por la flexión gravitacional y la captura de luz por parte del horizonte de sucesos, revela mucho sobre la naturaleza de estos objetos fascinantes y nos ha permitido medir la enorme masa del agujero negro de M87."

Utilizando métodos de calibración múltiple y métodos de imagen, se ha descubierto la presencia de una estructura en forma de anillo con una región central oscura —la sombra del agujero negro— que persistió durante varias observaciones independientes llevadas a cabo por el EHT.

“Cuando estuvimos seguros de que habíamos captado la imagen de la sombra, pudimos comparar nuestras observaciones con una extensa biblioteca de modelos computacionales que incluyen la física del espacio curvo, materia súper caliente e intensos campos magnéticos. Muchas de las estructuras en la imagen coinciden sorprendentemente bien con la predicción teórica”, comenta el miembro del Consejo del EHT, Paul T.P. Ho, director del Observatorio de Asia del Este. “Esto nos permite confiar en la interpretación de nuestras observaciones, incluyendo la estimación de la masa del agujero negro”.

Más de 200 investigadores formaron parte de este trabajo. Entre ellos, los Dres. Neil Nagar y Venkatessh Ramakrishnan, académico y postdoc del Departamento de Astronomía de la Universidad de Concepción, respectivamente, quienes con su aporte transformaron a la UdeC en la única casa de estudios chilena en ser parte de este hito astronómico. “Este descubrimiento viene a ser una de las pruebas más finas que ha pasado la teoría de la relatividad general de Einstein, la que tiene aproximadamente 100 años de existencia. Esto porque el descubrimiento se sitúa en el límite de una fuerte gravedad (horizonte de eventos, muy cerca de un agujero negro), lo que lo facilita la detección de pequeñas diferencias entre la observación y la teoría; y la teoría sobrevivió… por ahora”, analiza el Dr. Neil Nagar.

“La imagen que obtuvimos es la evidencia más fuerte y directa que comprueba la existencia de agujeros negros supermasivos (con masa de millones de veces la masa del Sol). Anteriormente, la confirmación de la existencia de agujeros negros con masas de 10 veces la masa del Sol había sido a través de la detección de ondas gravitacionales”, puntualiza Nagar.  

"La confrontación de la teoría con la observación es siempre un momento crucial para un teórico. Ha sido motivo de alivio y orgullo concluir que las observaciones coincidían tan bien con la predicción", agrega el miembro de Consejo de EHT Luciano Rezzolla, de la Universida de Goethe, Alemania.

La creación del EHT fue un reto formidable que requirió de la actualización y conexión de una red mundial de ocho telescopios preexistentes, situados en múltiples emplazamientos a una altitud desafiante. Estos lugares incluyen volcanes en Hawái y México, las montañas de Arizona y Sierra Nevada española, el desierto chileno de Atacama y la Antártida.

Las observaciones del EHT utilizan una técnica llamada interferometría de muy larga base (VLBI, Very-Long-Baseline Interferometry) que sincroniza los telescopios ubicados en instalaciones de todo el mundo y explota la rotación de nuestro planeta para formar un enorme telescopio del tamaño de la Tierra, observando en una longitud de onda de 1,3 mm. VLBI permite al EHT alcanzar una resolución angular de 20 microsegundos de arco (suficiente para leer un periódico en Nueva York desde un café de París) [5].

Los telescopios que han contribuido a este resultado fueron ALMA, APEX,en Chile, el telescopio IRAM de 30 metros, el Telescopio James Clerk Maxwell, el Gran Telescopio Milimétrico Alfonso Serrano, el Conjunto Submilimétrico, el Telescopio Submilimétrico y el Telescopio del Polo Sur [6]. Unos superordenadores, altamente especializados y ubicados en el Instituto Max Planck de Radioastronomía y el Observatorio Haystack del MIT, combinaron petabytes (1 petabyte = 1.024 terabytes) de datos brutos procedentes de estos telescopios.

“Es una satisfacción para ESO haber podido contribuir, de manera significativa, en este resultado a través de su liderazgo europeo y su papel fundamental en dos de los telescopios que componen el EHT, ubicados en Chile — ALMA y APEX” [7], comentó el Director General de ESO, Xavier Barcons. "ALMA es la instalación con mayor sensibilidad del EHT, y sus 66 antenas de alta precisión fueron críticas a la hora de hacer que el EHT sea un éxito”.

La construcción del EHT y las observaciones anunciadas hoy representan la culminación de décadas de trabajo observacional, técnico y teórico. Este ejemplo de trabajo en equipo global requirió de una estrecha colaboración por parte de investigadores de todo el mundo. Trece instituciones trabajaron juntas para crear el EHT, usando tanto infraestructuras preexistentes como el apoyo de una gran variedad de organismos. La financiación clave fue proporcionada por la NSF (National Science Foundation), el ERC (Consejo Europeo de Investigación de la UE) y agencias de financiación de Asia Oriental [8].

“Hemos logrado algo que, hace tan solo una generación, parecía imposible”, concluyó Doeleman. "Los avances revolucionarios de la tecnología, las conexiones entre los mejores observatorios de ondas de radio del mundo y los innovadores algoritmos, todo esto junto, ha abierto una ventana totalmente nueva para el estudio de los agujeros negros y el horizonte de sucesos”.

Notas

[1] La sombra de un agujero negro es lo más cerca que podemos estar de una imagen del agujero negro, un objeto totalmente oscuro del que la luz no puede escapar. El límite del agujero negro —el horizonte de sucesos del que el EHT toma su nombre— es aproximadamente 2,5 veces más pequeño que la sombra que proyecta y mide casi 40.000 millones de km.

[2] Los agujeros negros supermasivos son objetos astronómicos relativamente pequeños, lo que ha hecho imposible observarlos directamente hasta ahora. Dado que el tamaño del horizonte de sucesos de un agujero negro es proporcional a su masa, cuanto más masivo es un agujero negro, mayor será su sombra. Gracias a su enorme masa y su relativa proximidad, se predijo que el agujero negro de M87 sería uno de los más visibles desde la Tierra, convirtiéndolo en un blanco perfecto para el EHT.

[3] Aunque los telescopios no están conectados físicamente, son capaces de sincronizar sus datos con relojes atómicos — máser de hidrógeno — que miden con precisión el tiempo de las observaciones. Estas observaciones fueron recogidas en una longitud de onda de 1,3 mm durante una campaña mundial desarrollada en 2017. Cada telescopio del EHT produjo enormes cantidades de datos –aproximadamente 350 terabytes por día– que se almacenaron en discos duros de helio de alto rendimiento. Estos datos se enviaron a superordenadores especializados — conocidos como correladores — instalados en el Instituto de Radioastronomía Max Planck y el Observatorio Haystack del MIT, donde se combinaron. Luego, cuidadosamente, se convirtieron en una imagen utilizando novedosas herramientas computacionales desarrolladas por la colaboración.

[4] Hace cien años, dos expediciones fueron enviadas a Isla Príncipe (frente a las costas de África) y Sobral (Brasil) para observar el eclipse solar de 1919, con el objetivo de probar la relatividad general viendo si la luz de las estrellas se doblaba alrededor de los extremos del Sol, tal y como predijo Einstein. Rememorando estas observaciones, el EHT ha enviado a miembros del equipo a algunas de las aisladas instalaciones de radioastronomía más altas del mundo para poner a prueba, una vez más, nuestra comprensión de la gravedad.

[5] La participación del EAO (East Asian Observatory , Observatorio de Asia Oriental) en el proyecto EHT representa la participación de muchas regiones de Asia, incluyendo China, Japón, Corea, Taiwán, Vietnam, Tailandia, Malasia, India e Indonesia.

[6] Las futuras observaciones del EHT tendrán una sensibilidad sustancialmente mayor gracias a la participación del Observatorio IRAM NOEMA, el Telescopio Groenlandia y el Telescopio Kitt Peak.

[7] El conjunto ALMA, (Atacama Large Millimeter/submillimeter Array) es una instalación astronómica internacional fruto de la colaboración entre el Observatorio Europeo Austral (ESO: Europa, representando a sus estados miembros), la Fundación Nacional para la Ciencia de EE.UU. (NSF, National Science Foundation) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS, National Institutes of Natural Sciences) junto con el Consejo Nacional de Investigación de Canadá (National Research Council), el Ministerio de Ciencia y Tecnología de Taiwán (MOST; Taiwan): el Instituto de Astronomía de la Academia Séneca de Taiwán (ASIAA, Academia Sinica Institute of Astronomy and Astrophysics) y el Instituto de Astronomía y Ciencias Espaciales de la República de Corea (KASI, Korea Astronomy and Space Science Institute), en cooperación con la República de Chile. Las operaciones de APEX están a cargo de ESO; las del Telescopio de 30 metros está a cargo de IRAM (los socios de IRAM son MPG (Alemania), CNRS (Francia) e IGN (España)); el Telescopio James Clerk Maxwell está operado por EAO; el Gran Telescopio Milimétrico Alfonso Serrano está operado por el INAOE y la UMass; el Conjunto Submilimétrico está operado por el SAO y ASIAA; y el Telescopio Submilimétrico está operado por el ARO (Arizona Radio Observatory). Las operaciones del Telescopio del Polo Sur están a cargo de la Universidad de Chicago y cuenta con instrumentación especializada para el EHT proporcionada por la Universidad de Arizona.

[8] BlackHoleCam es un proyecto financiado por la UE para obtener imágenes, medir y comprender los agujeros negros astrofísicos. El objetivo principal de BlackHoleCam y del Telescopio de horizonte de sucesos (EHT) es hacer la primera imagen del agujero negro de miles de millones de masas solares situado en la galaxia cercana M87 y de su primo más pequeño, Sagitario A*, el agujero negro supermasivo del centro de nuestra Vía Láctea. Esto permite determinar con extrema precisión la deformación del espacio-tiempo causada por un agujero negro.

Neil Nagar
EHT - UDEC

Doctor en Astronomía por la Universidad de Maryland, College Park, EE. UU en 2000, y Bachelor en Ingeniería Electrónica y Magíster en Matemática de Birla Institute of Technology and Science, Pilani, India, en 1993. Su investigación se concentra en galaxias activas, agujeros negros supermasivos, cinemática de galaxias, y rayos cósmicos de altísima energía.

Trabaja con el EHT desde el año 2010. Actualmente, en sub-grupos de galaxias activas, calibración y explotación de datos de ALMA captados durante las observaciones del EHT. El grupo de Nagar está liderando proyectos para medir la masa de agujeros negros supermasivos (incluyendo M87) con ALMA y el VLT, y en identificar más galaxias cercanas para futuras observaciones con el EHT.

Actualmente es profesor del Departamento de Astronomía, U. de Concepción desde el año 2004.

Funciones específicas en ALMA y EHT:
  1. Proyecto de Fases de ALMA (APP) y APEX: Nagar participó en el APP desde 2009 y contribuyó a la financiación (un total de aproximadamente 5 años postdoc, 80K US$ en equipamiento), instalación de maser y puesta en marcha de APP. El postdoc Nestor Lasso colaboró en programar las tarjetas PIC (insertadas en el correlacionador) y el postdoc Jay Blanchard jugó un papel importante en la instalación y puesta en servicio. Nagar y Blanchard también estuvieron presentes en la mayoría de los esfuerzos depuesta en marcha y observación del telescopio APEX durante el periodo 2014 al presente.
  2. EHT: Neil Nagar participa desde el año 2009 (comenzando con la APP). La U. de Concepción ha sido miembro del EHT desde su fundación formal e informal. Nagar es co-coordinador del Grupo de Trabajo "AGN y otras ciencias no-horizonte" del EHT. Sus principales contribuciones incluyen análisis de los datasets de ALMA, apoyo en observación en APEX, propuestas de tiempo (e.g., Co-PI de las propuestas M87 y SgrA* a ALMA) y financiamiento (principalmente para postdocs), desarrollo de una muestra de galaxias cercanas (más allá de SgrA* y M87) para observaciones con el EHT, y la determinación de masas de agujeros negros para M87 y otros (futuros) objetivos de EHT.
Venkatessh Ramakrishnanr
EHT - UDEC

Doctor de Ciencia y Tecnología del Espacio por Aalto University, Finlandia, en 2016 y Magíster en Astronomía por University of Turku, Finlandia. Su investigación se concentra en galaxias activas y su variabilidad y cinemática. Trabaja con el EHT desde 2016 y actualmente, en los sub-grupos de galaxias activas, algoritmos de construcción de imágenes y calibración de datos, apoyando las pruebas y observaciones de EHT con el telescopio APEX. Además, parte de su trabajo lo dedica a proyectos para identificar más galaxias cercanas para futuras observaciones con el EHT.

Actualmente se encuentra realizando un postdoctorado en el Departamento de Astronomía., U. de Concepción desde el 2016. Venkatessh fue contratado en un postdoc de ALMA-Conicyt en la U. de Concepción para apoyar el uso científico del EHT. Ha hecho contribuciones significativas al Grupo de Trabajo de Imágenes del EHT, participando así en todos los esfuerzos de imágenes del M87. También se dedica a la obtención de imágenes de los objetivos de EHT AGN. Ramakrishnan trabaja en imágenes de línea continua y espectral de los datos de ALMA procedentes del EHT, proporcionando así una mejor calibración para el EHT, y en destilar una muestra más grande de galaxias cercanas para futuras observaciones con el EHT. Además, está presente en todas las carreras de EHT (puesta en marcha y observación) en APEX.

Información adicional

Este trabajo de investigación se ha presentado en una serie de seis artículos científicos publicados en un número especial de la revista The Astrophysical Journal Letters.

La colaboración del EHT involucra a más de 200 investigadores de África, Asia, Europa, norte y sur de América. La colaboración internacional está trabajando para captar las imágenes más detalladas de agujeros negros hechas jamás gracias a la creación de un telescopio virtual del tamaño de la Tierra. Apoyado por importantes inversiones internacionales, el EHT aúna a telescopios preexistentes que utilizan nuevos sistemas, creando, básicamente, un nuevo instrumento con la mayor capacidad de resolución angular que se haya logrado hasta el momento.

Los telescopios individuales involucrados son: ALMA, APEX, el telescopio IRAM de 30 metros, el Observatorio IRAM NOEMA, el JCMT (telescopio James Clerk Maxwell), el Gran Telescopio Milimétrico (GTM), el Conjunto Submilimétrico (SMA), el Telescopio Submilimétrico (SMT), el Telescopio del Polo Sur (SPT), el Telescopio Kitt Peak y el Telescopio de Groenlandia (GLT).

El consorcio EHT está formado por 13 institutos; el Instituto de Astronomía y Astrofísica de la Academia Séneca, la Universidad de Arizona, la Universidad de Chicago, el Observatorio de Asia oriental, la Universidad Goethe de Frankfurt, el Instituto de Radioastronomía Milimétrica, el Gran Telescopio Milimétrico, el Instituto Max Planck de Radioastronomía, el Observatorio Haystack del MIT, el Observatorio Astronómico Nacional de Japón, el Instituto Perimeter de Física Teórica, la Universidad de Radboud y del Observatorio Astrofísico Smithsonian.

ESO es la principal organización astronómica intergubernamental de Europa y el observatorio astronómico más productivo del mundo. Cuenta con dieciséis países miembros: Alemania, Austria, Bélgica, Dinamarca, España, Finlandia, Francia, Irlanda, Italia, Países Bajos, Polonia, Portugal, el Reino Unido, República Checa, Suecia y Suiza, junto con el país anfitrión, Chile, y con Australia como aliado estratégico. ESO desarrolla un ambicioso programa centrado en el diseño, construcción y operación de poderosas instalaciones de observación terrestres que permiten a los astrónomos hacer importantes descubrimientos científicos. ESO también desarrolla un importante papel al promover y organizar la cooperación en investigación astronómica. ESO opera en Chile tres instalaciones de observación únicas en el mundo: La Silla, Paranal y Chajnantor. En Paranal, ESO opera el Very Large Telescope junto con su interferómetro VLTI (Very Large Telescope Interferometer), el más avanzado del mundo, así como dos telescopios de rastreo: VISTA (siglas en inglés de Telescopio de Rastreo Óptico e Infrarrojo para Astronomía), que trabaja en el infrarrojo, y el VST (VLT Survey Telescope, Telescopio de Rastreo del VLT), que rastrea en luz visible. También en Paranal, ESO albergará y operará el Conjunto de Telescopios Cherenkov Sur, el observatorio de rayos gamma más sensible y más grande del mundo. ESO también es socio de dos instalaciones en Chajnantor, APEX y ALMA, actualmente el mayor proyecto astronómico en funcionamiento del mundo. Finalmente, en Cerro Armazones, cerca de Paranal, ESO está construyendo el ELT (Extremely Large Telescope), de 39 metros, que llegará a ser “el ojo más grande del mundo para mirar el cielo”.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Una nueva generación de astrónomos se licencia

El pasado 30 de marzo de 2019, 16 estudiantes de la carrera de astronomía de la Facultad de Ciencias Físicas y Matemáticas celebraron su ceremonia de licenciatura. En la actividad estuvieron presentes el decano y la vicedecana de la Facultad de Ciencias Físicas y Matemáticas, Dr. Robero Riquelme y Dra. Myrna Sandoval, respectivamente; el director del Departamento de Astronomía, Dr. Ricardo Demarco, el jefe de carrera Dr. Dominik Schleicher y familiares de los licenciados.

Los estudiantes fueron: Jennifer Anguita, Juanita Antilén, Claudio Bravo, Camila Cid, Marcelo Cortés, Daniela Durán, Caleb Gatica, Andrea Guerrero, Nicol Gutiérrez, Matías Morales, Morín Órdenes, Alexander Pillard, Matías Sotomayor, Carolina Vargas, Carlos Venegas y Phillipe Vergara.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Estudiante de la Facultad de Ciencias Físicas y Matemáticas UdeC recibe beca DAAD para estudios en el extranjero

  • Felipe Navarrete, quien es parte del Grupo de Teoría del Departamento de Astronomía UdeC, iniciará estudios en Alemania para realizar un doctorado.

Otra buena noticia para el Departamento de Astronomía: se trata de la beca obtenida por el estudiante de magíster, Felipe Navarrete, quien durante tres años desarrollará sus estudios de doctorado en astrofísica estelar, específicamente en el área de campos magnéticos en estrellas enanas M en el observatorio de Hamburgo.

Allí trabajará con el profesor Robi Banerjee, quien además es el director del Observatorio de Hamburgo, y con el postdoctorado Marcel Völschow de la misma institución.

“La investigación consiste en desarrollar un modelo computacional para la formación del campo magnético en estrellas enanas M. Actualmente, hay muchas interrogantes sobre cómo estas estrellas generan su magnetismo, ya que la analogía con el Sol se rompe debido a que las enanas M en su mayoría son estructuralmente diferentes al Sol”, explica Felipe.

Una vez desarrollado este modelo, podrá ser aplicado para entender el proceso de la generación del campo magnético en enanas M, realizar comparaciones con observaciones, responder a la interrogante de qué causa la variación de tiempos de eclipse observadas en ciertos tipos de estrellas binarias, y ayudar a entender el impacto de estos campos magnéticos en planetas potencialmente habitables.

En el proceso de postulación, Felipe contó con la asesoría del docente del Departamento de Astronomía Dr. Dominik Schleicher. “El profesor Dominik me contó sobre la beca y me apoyó en el proceso de postulación… con estos estudios, espero poder crear una red de colaboración internacional, lo que es indispensable para hacer ciencia de calidad hoy en día”, finaliza Felipe.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Estudiante de la Facultad de Ciencias Físicas y Matemáticas UdeC desarrollará su doctorado en Alemania

  • Joaquín Zamponi fue aceptado en la Escuela Internacional de Doctorados del Max-Planck, (IMPRS), en la ciudad de Garching, Alemania.
  • La astroquímica y radioastronomía serán los campos en los que Zamponi desarrollará su investigación.

Joaquín Zamponi, estudiante de Magíster en Ciencias con mención en Física y perteneciente al Grupo de Teoría del Departamento de Astronomía de la Universidad de Concepción, fue seleccionado para realizar un doctorado en la International Max-Planck Research School en Alemania. “En primera instancia se recibieron 341 postulaciones de 50 países distintos, dentro de los cuales, solo 45 fuimos preseleccionados e invitados al IMPRS Recruitment Workshop (25-27 de febrero) en el Instituto Max-Planck para Física Extraterrestre, Garching” (MPE), comenta Zamponi. Es así que durante tres años compartirá con la comunidad científica internacional, enfocado en el campo de la astroquímica y la radioastronomía, realizando observaciones sintéticas (simuladas) de discos protoestelares para luego compararlas con observaciones reales tomadas por el interferómetro ALMA.

En Garching, Joaquín desarrollará su doctorado con la profesora Dra. Paola Caselli como tutora, junto al Dr. Bo Zhao, del mismo instituto. “La profesora Caselli es una de las expertas en el campo de la astroquímica, con casi tres décadas de experiencia. Es por esto que es para mí uno de los mayores logros trabajar bajo su tutela. El Profesor Zhao es experto en simulaciones numéricas que incluyan efectos magneto-hidrodinámicos. Los resultados de su trabajo presentan la base de mi tesis. Una vez iniciado el programa, formaré parte del Centro para Estudios Astroquímicos (CAS, por sus siglas en inglés) del MPE”, explica Joaquín.

Actualmente, Joaquín forma parte del Grupo de Teoría del Departamento de Astronomía como investigador tesista de magíster. “Mi aporte al grupo cae en el área de los estudios astroquímicos y observacionales de las regiones de formación estelar masiva. Cabe notar el constante apoyo hacia los estudiantes por parte de los profesores del grupo. Gracias a esto fui capaz de enlazar los contactos necesarios para postular al doctorado, ya que de no ser por mis profesores Dominik Schleicher y Stefano Bovino, el camino hacia una postulación exitosa hubiese sido mucho más empinado.

El instituto MPE se encuentra junto al instituto Max-Planck para Astrofísica (MPA) y el Observatorio Europeo del Sur (ESO), los tres en el mismo campus. Entre éstos, existen más de 200 investigadores internacionales enfocados en las distintas áreas de la astronomía. “Ubicarme como un investigador más entre ellos, entrando desde el punto más bajo, me ayuda de manera significativa a madurar científicamente. El ritmo investigativo que se lleva en el campus es altísimo, con seminarios e invitados internacionales con quienes discutir las dudas que nacen durante el desarrollo de la tesis. En fin, ser parte de tal comunidad científica, es para mí uno de los mayores logros hasta ahora y espero ponerme a la altura que se necesita”, finaliza Joaquín.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Desde nuestra Vía Láctea a la Gran Nube de Magallanes

La medida más precisa del Universo

  • Con un trabajo de investigación de más de 10 años, científicos de la Universidad de Concepción, lograron determinar con la máxima precisión posible hasta ahora la distancia entre la Vía Láctea y la Gran Nube de Magallanes.
  • La investigación fue publicada en la prestigiosa revista científica Nature y viene a ser un aporte único en la ciencia astronómica.

Durante 16 años de investigaciones un grupo de científicos, liderado por académicos de la Universidad de Concepción, buscó mejorar la calibración de la escala de distancia cósmica en el Universo local, pudiendo determinar la distancia a la galaxia más cercana, la Gran Nube de Magallanes, con un 1% de precisión, algo nunca jamás logrado y un gran logro para el mundo de la astronomía.

“Una distancia a la Gran Nube de Magallanes que es precisa al uno por ciento " (“A distance to the Large Magellanic Cloud that is precise to one per cent”, en inglés) se titula la investigación cuyo paper fue publicado el recién pasado 14 de marzo de 2019 en la reconocida revista científica “Nature”.

La publicación es liderada por los Dres. Grzegorz Pietrzynski (como primer autor), Darek Graczyk y Wolfgang Gieren, todos pertenecientes a la Universidad de Concepción, quienes forman parte de un grupo de 22 científicos de distintos países como Polonia, Francia, Estados Unidos y Alemania.

El trabajo se enmarca en el “Proyecto Araucaria” del Centro de Astrofísica y Tecnologías Afines, CATA, y apoyado por el Instituto Milenio de Astrofísica MAS, que es liderado por el Dr. Wolfgang Gieren, académico del Departamento de Astronomía de la Universidad de Concepción.

Para la investigación se utilizaron estrellas binarias eclipsantes muy especiales que son sumamente raras (una, en un millón de estrellas) con una nueva técnica calibrada por el grupo de trabajo. “La Gran Nube de Magallanes es la galaxia con la cual se está calibrando la escala de las distancias a todas las galaxias en el Universo. Es la primera vez en la historia de la Astronomía que se pudo medir la distancia a una galaxia con tal precisión”.

Recordemos que el año 2013, el mismo equipo de investigación del “Proyecto Araucaria”, iniciado el año 2002 en la Universidad de Concepción, logró determinar la distancia a la galaxia Gran Nube de Magallanes con una precisión del 2.2% (también publicado en Nature, el mismo año). “El mejoramiento de esta precisión al 1% es un paso gigantesco para mejorar nuestra comprensión de la expansión del Universo, y del fenómeno de la energía oscura que es uno de los grandes enigmas contemporáneos en la Astrofísica”, explica el Dr. Wolfgang Gieren, quien también es investigador asociado del MAS.

Dr. Wolfgang Gieren y Dr. Grzegorz Pietrzynski, investigadores del proyecto.
Pero, ¿cómo se logró este avance?

Para aumentar la precisión que ya se había logrado el año 2013, (pasar de un 2,2% a un 1% de exactitud) los investigadores extendieron las muestras de sistemas de estrellas binarias que utilizaban en la Gran Nube de Magallanes de ocho a veinte, y a esto se sumó una nueva calibración de la técnica usando mediciones interferométricas obtenidas en el Observatorio Paranal del Observatorio Europeo Austral, ESO, en nuestro país. Además de éste, se utilizaron telescopios del observatorio La Silla, el telescopio Magallanes del Observatorio Las Campanas en Chile y telescopios del South African Astronomical Observatory (SAAO) cerca de Ciudad del Cabo, Sudáfrica.

La investigación tomó 16 años de estudio debido a que “la mayoría de nuestros sistemas binarios en la Gran Nube de Magallanes necesitan varios años para cumplir sus ciclos orbitales, los cuales teníamos que cubrir completamente con observaciones fotométricas y espectroscópicas”, clarifica el Dr. Gieren, quien es co-creador del estudio junto al Dr. Pietrzynski. Ambos participaron en las observaciones, análisis de datos y redacción de la publicación.

Es así como luego de más de una década de dedicado trabajo científico, el cual fue liderado desde Chile, se logra un gran paso para mejorar el entendimiento de la historia de nuestro Universo.

Celeste Burgos Badal
Comunicaciones Departamento de Astronomía UdeC


Científicos gestores de las mediciones más exactas de las distancias a las galaxias cercanas en el Universo se reúnen en Concepción

Durante los días 6, 7 y 8 de marzo se realizará el encuentro científico “Araucaria Project science meeting” que busca compartir avances y definir estrategias de trabajo entre los investigadores respecto a las mediciones de distancias en el Universo.

Hace algunos años, un grupo de astrónomos, a través del “Proyecto Araucaria”, logró determinar con una exactitud sin precedentes la distancia a la Nube de Magallanes, una de las galaxias más próximas a la Vía Láctea.

Por medio de este trabajo, el equipo de científicos conformado por investigadores de Chile, Polonia, Alemania, Francia, Estados Unidos, Italia e Inglaterra, ha seguido realizando avances aún más precisos en el área. Es por esto que durante los días 6, 7 y 8 de marzo se reunirán en Concepción para discutir y compartir los progresos y pasos a seguir.

El Dr. Wolfgang Gieren, uno los líderes del “Proyecto Araucaria” y académico del Departamento de Astronomía de la Universidad de Concepción, señala que “queremos mejorar la precisión con la cual podemos determinar las distancias a las galaxias, desde las más cercanas a las más lejanas en el Universo. Esto es un tema fundamental para prácticamente todos los ramos de la Astrofísica, incluyendo la cosmología. El parámetro tal vez más importante de la cosmología, la llamada constante de Hubble, depende críticamente de nuestra capacidad de medir distancias ultra-precisas a las galaxias”.

El encuentro científico del “Proyecto Araucaria” se llevará a cabo en el Hotel Atton, iniciándose el día 6 de marzo a las 9:00 horas, continuando los días 7 y 8 del mismo mes. Durante los tres días que se extiende la actividad, 30 científicos presentarán charlas sobre sus trabajos, tratando temas como programas de fotometría, cúmulos estelares con estrellas variables pulsantes, análisis sobre la Nube de Magallanes y estrellas variables cefeidas, entre otros.

Esta es la cuarta reunión de los miembros del proyecto (las anteriores se realizaron el 2017 en Polonia, el 2013 en Francia y el 2010 en Alemania) y el propósito es actualizar los temas de trabajo de cada grupo y subgrupo de investigación. Se definirán las próximas temáticas a trabajar, y las metas científicas para los próximos tres a cinco años.

Proyecto Araucaria

El Proyecto Araucaria se inició el año 2000 por los investigadores Wolfgang Gieren y Grzegorz Pietrzynski , quienes forman parte del Departamento de Astronomía de la Universidad de Concepción. Su principal objetivo: mejorar la calibración de la escala de distancia cósmica en el Universo local.

“Era un proyecto muy ambicioso, le hemos dado un nombre especial que refleja que nació en el Sur de Chile, y se nos ocurrió llamarlo "Proyecto Araucaria", porque ambos amamos ese árbol y simboliza esa zona de Chile para nosotros”, explica el Dr. Gieren.

Aproximadamente 30 personas de distintos países como Chile, Polonia, Alemania, Francia, Estados Unidos, Italia e Inglaterra componen el proyecto, el cual ha producido cerca de 200 papers en revistas internacionales de máximo prestigio, incluyendo tres publicaciones en la reconocida revista científica Nature.

“En el año 2013, tuvimos una publicación en Nature sobre la determinación más precisa (con un error de sólo un 2%) de la galaxia más cercana a la nuestra, la Gran Nube de Magallanes, usando una técnica desarrollada por nosotros en el Proyecto Araucaria. Lo hicimos usando estrellas binarias eclipsantes especiales y muy raras que son aptas para medir sus distancias. La Gran Nube de Magallanes sirve de "ancla", o punto cero, para determinar las distancias a galaxias más lejanas, por lo tanto, es fundamental medir la distancia a la Gran Nube de Magallanes con la máxima precisión posible”, explica el Dr. Gieren.

Dicha publicación en Nature tuvo mucha repercusión mediática dado la importancia del descubrimiento y se transformó en referencia estándar en la literatura astronómica en relación a mediciones de distancias desde entonces (casi 400 menciones y referencias hasta el momento). Es así como a través del Proyecto Araucaria se han producido resultados novedosos y en parte espectaculares en los campos de estrellas variables, y de la evolución estelar, incluyendo estudios empíricos y teóricos.

Araucaria Project science meeting” / Encuentro científico del Proyecto Araucaria

Días: 6,7 y 8 de Marzo

Lugar: Hotel Atton. Eleuterio Ramírez 75, Concepción

Hora: 9:00 - 18:00 Horas

Participantes: 30 científicos nacionales e internacionales de la cosmología intercambiarán ideas y conocimientos sobre la medición de escalas de distancia en el universo

*El "Proyecto Araucaria" ha realizado la medicón de distancia a la galaxia Gran Nube de Magallanes más precisa existente hasta ahora*

Más información en: araucaria.camk.edu.pl

Comunicaciones Departamento de Astronomía UdeC

28 de Enero de 2019

Departamento de Astronomía UdeC cuenta con nuevo telescopio para docencia e investigación

A la izquierda, Magíster Fernando Cortés, encargado de telescopios del Departamento de Astronomía UdeC. A la derecha, Dr. Sandro Villanova, director ejecutivo del proyecto telescopio óptico y académico del Departamento de Astronomía UdeC.

  •  El instrumento de 40 centímetros de diámetro se suma al actual equipo de telescopios para realizar investigaciones desde Concepción.
  •  Permitirá aprovechar de mejor forma los recursos para el desarrollo de proyectos científicos y docencia.

El Departamento de Astronomía de la Universidad de Concepción suma un nuevo instrumento para la ciencia que desarrolla en sus instalaciones: se trata de un telescopio catadióptrico (utiliza espejos y lentes para captar imágenes) de 40 cms. de diámetro y operado de manera remota.

La idea surgió hace unos años, cuando el Dr. Douglas Geisler, tuvo la idea de contar con un telescopio con la tecnología necesaria para desarrollar docencia e investigación. Tiempo después, el Dr. Sandro Villanova, director ejecutivo del proyecto, comenzó a realizar las gestiones necesarias para adquirir un telescopio. “Hace un año y medio comencé con las averiguaciones, me contacté con la empresa italiana Officina Stellare, que diseña y manufactura tecnologías de este tipo, y así me encargué de definir el tamaño del telescopio, la montura, cámaras, filtros y otros detalles técnicos según el presupuesto con el que contábamos”, relata Villanova. De esa forma, el telescopio llegó a Chile a principios de 2018. Recientemente fue instalado en la plataforma científica WenuLafquen de la UdeC, y cuenta con una cúpula para su protección.

El proyecto tuvo un costo de 70 millones de pesos y fue financiado por el proyecto BASAL AFB-17002.

Hasta el año 2018, el Departamento de Astronomía contaba con cinco telescopios: un refractor, un reflector y tres catadióptricos, el más grande de ellos de 27 cms. de diámetro utilizado hasta entonces para divulgación y docencia ubicado en la Facultad de Ciencias Físicas y Matemáticas. Sin embargo, debido a las condiciones del lugar y la contaminación lumínica se contaba con ciertas limitantes a la hora de poder realizar observación astronómica, algo que con el nuevo equipo cambiará.

El instrumento de 40 centímetros de diámetro se suma al actual equipo de telescopios para realizar investigaciones y docencia desde Concepción.

Para el Encargado de Telescopios del Departamento de Astronomía, Magíster Fernando Cortés, con el nuevo telescopio óptico de 40 cms. se mejora de gran manera la realización de clases a los estudiantes y el desarrollo de investigación. “Ya no será necesario viajar a los observatorios del norte de Chile para ciertas sesiones propias de la carrera de astronomía, por lo que se podrá ahorrar en dinero y tiempo, además de desarrollar ciencia astronómica desde Concepción”, explica.

 Además, en cuanto a investigación, este nuevo telescopio permite el manejo de manera remota, por lo que no es necesario que el astrónomo esté en las mismas instalaciones, lo que aporta en la eficiencia profesional, y el hecho de encontrarse instalado en un entorno con menos contaminación lumínica propicia mejores imágenes y datos, pudiendo estudiar cúmulos de estrellas, estrellas variables, planetas, zonas de formación estelar y galaxias cercanas.

Cabe destacar que la plataforma científica WenuLafquen está conformada además por una estación criogénica, un laboratorio de microondas y un radiotelescopio de tres metros, convirtiendo a la UdeC en la única casa de estudios de la región en contar con un equipo de instrumentos y observatorio de este tipo.

Los próximos pasos son la instalación de las redes de comunicación, eléctricas y softwares para la puesta en marcha del telescopio que se espera sea el primer semestre de 2019.





Comunicaciones Astronomía UdeC


© Departamento de Astronomía Imágen no disponible      Imágen no disponible Imágen no disponible